Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions.

نویسندگان

  • G Manukyan
  • J M Oh
  • D van den Ende
  • R G H Lammertink
  • F Mugele
چکیده

We demonstrate that the equilibrium shape of the composite interface between superhydrophobic surfaces and drops in the superhydrophobic Cassie state under electrowetting is determined by the balance of the Maxwell stress and the Laplace pressure. Energy barriers due to pinning of contact lines at the edges of the hydrophobic pillars control the transition from the Cassie to the Wenzel state. Barriers due to the narrow gap between adjacent pillars control the lateral propagation of the Wenzel state. We demonstrate how reversible switching between the two wetting states can be achieved locally using suitable surface and electrode geometries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.

Liquid drops on textured surfaces show different dynamical behaviors depending on their wetting states. They are extremely mobile when they are supported by composite solid-liquid-air interfaces (Cassie-Baxter state) and immobile when they fully wet the textured surfaces (Wenzel state). By reversibly switching between these two states, it will be possible to achieve control over the fluid dynam...

متن کامل

Electrical actuation-induced droplet transport on smooth and superhydrophobic surfaces

Electrical control of liquid droplet motion and wettability has wide-ranging applications in the field of MEMS, lab-on-a-chip devices and surface engineering, in view of the resulting enhanced flow control opportunities, low power consumption and the absence of mechanical moving parts. This article summarizes recent progress towards understanding of the fundamentals underlying electrical actuat...

متن کامل

Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces.

In this work, electrically controlled fully reversible wetting-dewetting transitions on superhydrophobic nanostructured surfaces have been demonstrated. Droplet behavior can be reversibly switched between the superhydrophobic Cassie-Baxter state and the hydrophilic Wenzel state by the application of electrical voltage and current. The nature of the reversibility mechanism was studied both exper...

متن کامل

Dewetting Transitions on Superhydrophobic Surfaces: When Are Wenzel Drops Reversible?

On superhydrophobic surfaces, drops in the Wenzel state can be switched to the suspended Cassie state in some cases but in other cases are irreversibly impaled in the surface roughness. To date, the question of when dewetting transitions are possible for Wenzel drops has not been resolved. Here, we show that pinned Wenzel drops being stretched out-of-plane cannot reduce their contact angle belo...

متن کامل

Reversible switching between superhydrophobic states on a hierarchically structured surface.

Nature offers exciting examples for functional wetting properties based on superhydrophobicity, such as the self-cleaning surfaces on plant leaves and trapped air on immersed insect surfaces allowing underwater breathing. They inspire biomimetic approaches in science and technology. Superhydrophobicity relies on the Cassie wetting state where air is trapped within the surface topography. Pressu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 106 1  شماره 

صفحات  -

تاریخ انتشار 2011